These racer assignment grids satisfy the "Perfect-N Criteria" in which each car races in each lane the same number of times and races each opponent the same number of times. Competitions which satisfy the "Perfect-N Criteria" have exceptional accuracy because almost all of the effects of lane differences are balanced out.
Two types of "chart symbols" are used: "P N-L (M)" and "CP N-L (M)". "P" indicates that the chart satisfies the "Perfect-N" criteria; "CP" indicates that the chart satisfies the more accurate "Complementary Perfect-N" criteria. N is the number of cars, L is the number of lanes, and M is the number of times each pair of cars is matched.
This page provides the parameters for quite a few charts (about 90 of them) for a variety of track and group sizes. If you have a JavaScript-capable browser, such as Netscape or MS Internet Explorer, your browser can prepare the charts for you. Try the Perfect-N Chart Generation page.
Select grids which requires no more lanes than you have available. From those, select charts which can handle the number of cars you have to race. From those, select a chart which has an appropriate number of heats.
Note: The method retains significant accuracy, even if byes are raced.
Cars | Heats | Chart Symbol | Generator(s) |
---|---|---|---|
3 | 3 | P 3-3 (3) | {1, 1} |
3 | 6 | CP 3-3 (6) | {1, 1} {2, 2} |
4 | 4 | P4-3 (2) | {1, 1} |
4 | 8 | CP4-3 (4) | {1, 1} {3, 3} |
5 | 10 | P5-3 (3) | {1, 1} {2, 2} |
7 | 7 | P7-3 (1) | {1, 2} |
7 | 14 | P7-3 (2) | {1, 2} {2, 1} |
7 | 14 | CP7-3 (2) | {1, 2} {6, 5} |
7 | 21 | P7-3 (3) | {1, 1} {2, 2} {3, 3} |
7 | 28 | CP7-3 (4) | {1, 3} {6, 4} {3, 2} {4, 5} |
9 | 36 | P9-3 (3) | {1, 1} {2, 2} {3, 3} {4, 4} |
9 | 72 | CP9-3 (6) | {1, 1} {8, 8} {2, 2} {7, 7} {3, 3} {6, 6} {4, 4} {5, 5} |
13 | 26 | P13-3 (1) | {1, 3} {2, 5} |
13 | 52 | CP13-3 (2) | {1, 3} {12, 10} {2, 5} {11, 8} |
19 | 57 | P19-3 (1) | {1, 3} {2, 7} {5, 6} |
19 | 114 | CP19-3 (2) | {1, 3} {18, 16} {2, 7} {17, 12} {5, 6} {14, 13} |
25 | 100 | P25-3 (1) | {1, 2} {4, 7} {5, 8} {6, 9} |
25 | 200 | CP25-3 (2) | {1, 2} {24, 23} {4, 7} {21, 18} {5, 8} {20, 17} {6, 9} {19, 16} |
4 | 4 | P4-4 (4) | {1, 1, 1} |
4 | 8 | CP4-4 (8) | {1, 1, 1} {3, 3, 3} |
5 | 5 | P5-4 (3) | {1, 1, 1} |
5 | 10 | CP5-4 (6) | {1, 1, 1} {4, 4, 4} |
5 | 15 | P5-4 (9) | {1, 1, 1} {2, 2, 2} {3, 3, 3} |
7 | 7 | P7-4 (2) | {1, 1, 2} |
7 | 14 | CP7-4 (4) | {1, 1, 2} {6, 6, 5} |
7 | 21 | P7-4 (6) | {1, 1, 1} {2, 2, 2} {3, 3, 3} |
9 | 18 | P9-4 (3) | {1, 1, 2} {2, 3, 1} |
9 | 36 | CP9-4 (6) | {1, 1, 2} {8, 8, 7} {2, 3, 1} {7, 6, 8} |
10 | 30 | P10-4 (4) | {1, 1, 2} {2, 2, 3} {3, 6, 5} |
10 | 60 | CP10-4 (8) | {1, 1, 2} {9, 9, 8} {2, 2, 3} {8, 8, 7} {3, 6, 5} {7, 4, 5} |
13 | 13 | P13-4 (1) | {1, 2, 6} |
13 | 26 | CP13-4 (2) | {1, 2, 6} {12, 11, 7} |
13 | 39 | P13-4 (3) | {1, 1, 3} {2, 5, 5} {3, 4, 2} |
19 | 57 | P19-4 (2) | {1, 1, 4} {2, 6, 3} {3, 4, 5} |
19 | 114 | CP19-4 (4) | {1, 1, 4} {18, 18, 15} {2, 6, 3} {17, 13, 16} {3, 4, 5} {16, 15, 14} |
37 | 111 | P37-4 (1) | {1, 2, 21} {4, 5, 6} {7, 10, 8} |
37 | 222 | CP37-4 (2) | {1, 2, 21} {36, 35, 16} {4, 5, 6} {33, 32, 31} {7, 10, 8} {30, 27, 29} |
5 | 5 | P5-5 (5) | {1, 1, 1, 1} |
5 | 10 | CP5-5 (10) | {1, 1, 1, 1} {4, 4, 4, 4} |
6 | 6 | P6-5 (4) | {1, 1, 1, 1} |
6 | 12 | CP6-5 (8) | {1, 1, 1, 1} {5, 5, 5, 5} |
6 | 18 | P6-5 (12) | {1, 1, 1, 1} {2, 2, 3, 2} {3, 4, 4, 3} |
7 | 21 | P7-5 (10) | {1, 1, 1, 1} {2, 2, 2, 2} {3, 3, 3, 3} |
7 | 42 | CP7-5 (20) | {1, 1, 1, 1} {6, 6, 6, 6} {2, 2, 2, 2} {5, 5, 5, 5} {3, 3, 3, 3} {4, 4, 4, 4} |
9 | 18 | P9-5 (5) | {1, 1, 1, 3} {2, 2, 3, 1} |
9 | 36 | CP9-5 (10) | {1, 1, 1, 3} {8, 8, 8, 6} {2, 2, 3, 1} {7, 7, 6, 8} |
11 | 11 | P11-5 (2) | {1, 1, 2, 3} |
11 | 22 | CP11-5 (4) | {1, 1, 2, 3} {10, 10, 9, 8} |
21 | 21 | P21-5 (1) | {1, 3, 10, 2} |
21 | 42 | CP21-5 (2) | {1, 3, 10, 2} {20, 18, 11, 19} |
41 | 82 | P41-5 (1) | {1, 3, 7, 18} {2, 6, 9, 5} |
41 | 164 | CP41-5 (2) | {1, 3, 7, 18} {40, 38, 34, 23} {2, 6, 9, 5} {39, 35, 32, 36} |
6 | 6 | P6-6 (6) | {1, 1, 1, 1, 1} |
6 | 12 | CP6-6 (12) | {1, 1, 1, 1, 1} {5, 5, 5, 5, 5} |
7 | 7 | P7-6 (5) | {1, 1, 1, 1, 1} |
7 | 14 | CP7-6 (10) | {1, 1, 1, 1, 1} {6, 6, 6, 6, 6} |
7 | 21 | P7-6 (15) | {1, 1, 1, 1, 1} {2, 2, 2, 2, 2} {3, 3, 3, 3, 3} |
11 | 11 | P11-6 (3) | {1, 1, 2, 1, 2} |
11 | 22 | CP11-6 (6) | {1, 1, 2, 1, 2} {10, 10, 9, 10, 9} |
13 | 26 | P13-6 (5) | {1, 1, 1, 2, 4} {2, 3, 3, 1, 7} |
13 | 52 | CP13-6 (10) | {1, 1, 1, 2, 4} {12, 12, 12, 11, 9} {2, 3, 3, 1, 7} {11, 10, 10, 12, 6} |
31 | 31 | P31-6 (1) | {1, 2, 5, 4, 6} |
31 | 62 | CP31-6 (2) | {1, 2, 5, 4, 6} {30, 29, 26, 27, 25} |
7 | 7 | P7-7 (7) | {1, 1, 1, 1, 1, 1} |
7 | 14 | CP7-7 (14) | {1, 1, 1, 1, 1, 1} {6, 6, 6, 6, 6, 6} |
8 | 8 | P8-7 (6) | {1, 1, 1, 1, 1, 1} |
8 | 16 | CP8-7 (12) | {1, 1, 1, 1, 1, 1} {7, 7, 7, 7, 7, 7} |
15 | 15 | P15-7 (3) | {1, 1, 2, 1, 3, 2} |
15 | 30 | CP15-7 (6) | {1, 1, 2, 1, 3, 2} {14, 14, 13, 14, 12, 13} |
8 | 8 | P8-8 (8) | {1, 1, 1, 1, 1, 1, 1} |
8 | 16 | CP8-8 (16) | {1, 1, 1, 1, 1, 1, 1} {7, 7, 7, 7, 7, 7, 7} |
9 | 9 | P9-8 (7) | {1, 1, 1, 1, 1, 1, 1} |
9 | 18 | CP9-8 (14) | {1, 1, 1, 1, 1, 1, 1} {8, 8, 8, 8, 8, 8, 8} |
15 | 15 | P15-8 (4) | {1, 1, 1, 2, 2, 1, 3} |
15 | 30 | CP15-8 (8) | {1, 1, 1, 2, 2, 1, 3} {14, 14, 14, 13, 13, 14, 12} |
57 | 57 | P57-8 (1) | {1, 2, 10, 19, 4, 7, 9} |
57 | 114 | CP57-8 (2) | {1, 2, 10, 19, 4, 7, 9} {56, 55, 47, 38, 53, 50, 48} |
9 | 9 | P9-9 (9) | {1, 1, 1, 1, 1, 1, 1, 1} |
9 | 18 | CP9-9 (18) | {1, 1, 1, 1, 1, 1, 1, 1} {8, 8, 8, 8, 8, 8, 8, 8} |
10 | 10 | P10-9 (8) | {1, 1, 1, 1, 1, 1, 1, 1} |
10 | 20 | CP10-9 (16) | {1, 1, 1, 1, 1, 1, 1, 1} {9, 9, 9, 9, 9, 9, 9, 9} |
13 | 13 | P13-9 (6) | {1, 1, 1, 1, 1, 2, 2, 1} |
13 | 26 | CP13-9 (12) | {1, 1, 1, 1, 1, 2, 2, 1} {12, 12, 12, 12, 12, 11, 11, 12} |
19 | 19 | P19-9 (4) | {1, 1, 1, 2, 2, 5, 1, 3} |
19 | 38 | CP19-9 (8) | {1, 1, 1, 2, 2, 5, 1, 3} {18, 18, 18, 17, 17, 14, 18, 16} |
37 | 37 | P37-9 (2) | {1, 2, 4, 10, 7, 1, 4, 6} |
37 | 74 | CP37-9 (4) | {1, 2, 4, 10, 7, 1, 4, 6} {36, 35, 33, 27, 30, 36, 33, 31} |
73 | 73 | P73-9 (1) | {1, 2, 4, 6, 16, 5, 18, 9} |
73 | 146 | CP73-9 (2) | {1, 2, 4, 6, 16, 5, 18, 9} {72, 71, 69, 67, 57, 68, 55, 64} |
91 | 91 | P91-10 (1) | {1, 2, 6, 18, 22, 7, 5, 16, 4} |
91 | 182 | CP91-10 (2) | {1, 2, 6, 18, 22, 7, 5, 16, 4} {90, 89, 85, 73, 69, 84, 86, 75, 87} |
Back to the method page...
Latest update: 11/13/97
Copyright 1997 © by Stan Pope and Cory Young. All rights reserved.